N. Ryazanov

The frames of the 1st and 2nd order on a principal bundle

We proceed the studying tangent and osculating bundles over arbitrary principal bundle on a manifold by means of covariant method [5] and based on structure equations and derivation formulas. Expressions of fiber forms in the natural coframe, basis vectors of the 2nd order in the natural frame, structure constants in terms of fiber coordinates are obtained.

УДК 514.764.2

С. Е. Степанов, И. И. Цыганок

Финансовый университет при Правительстве РФ, Москва s. e.stepanov@mail.ru

Об эллиптичности одного дифференциального оператора

Пусть $\left\{d,d^*,D\right\}$ — базис пространства естественных (относительно изометрических диффеоморфизмов) дифференциальных операторов первого порядка, действующих на пространстве $\Omega^r(M)$ внешних дифференциальных r-форм $(1 \le r \le n-1)$ на римановом многообразии (M,g) и имеющих значение в пространстве однородных тензоров над (M,g). Доказано, что для оператора D^* , формально сопряженного к D, дифференциальный оператор второго порядка $D^*D:\Omega^r(M) \to \Omega^r(M)$ является эллиптическим.

Ключевые слова: компактное риманово многообразие, эллиптический дифференциальный оператор второго порядка.

_

[©] Степанов С. Е., Цыганок И.И., 2015

1. Введение и результат

Более тридцати пяти лет назад Ж.-П. Бургиньон (см.: [1, с. 264—265]) доказал, что на n-мерном римановом многообразии (M,g) существует базис $\left\{d,d^*,D\right\}$ пространства естественных (относительно изометрических диффеоморфизмов) дифференциальных операторов первого порядка, которые действуют на пространстве $\Omega^r(M)$ внешних дифференциальных r-форм $(1 \le r \le n-1)$ и имеют значение в пространстве однородных тензоров над (M,g). Здесь $d:\Omega^r(M) \to \Omega^{r+1}(M) \to \Omega^r(M)$ — оператор внешнего дифференцирования и $d^*:\Omega^{r+1}(M) \to \Omega^r(M)$ — ему формально сопряженный оператор кодифференцирования. Вид третьего базисного оператора D был найден только для случая r=1, при этом уточнялось, что ядро D составляют U0, U1.

С помощью операторов d и d^* базиса строится хорошо известный лапласиан Ходжа—де Рама $\Delta = d^*d + d d^*$, который стал самосопряженным неотрицательным эллиптическим дифференциальным оператором второго порядка $\Delta: \Omega^r(M) \to \Omega^r(M)$. Его ядро $\ker \Delta$ на компактном (M, g) составляют гармонические r-формы, образующие конечномерное векторное пространство $\mathbf{H}^r(M, \mathbb{R})$, размерность которого равна числу Бетти $b_r(M)$ многообразия (M, g).

Вид третьего базисного оператора D определен в [2] и [3], там же было доказано, что его ядро составляют конформно киллинговые r-формы (см.: [4; 5]). В работе [6] для компактного (M,g) найден оператор D^* , формально сопряженный к D, и построен дифференциальный оператор второго порядка

$$D^*D = \frac{1}{r(r+1)} \left(\nabla^* \nabla - \frac{1}{r+1} d^* d - \frac{1}{n-r+1} d d^* \right),$$

где ∇ — связность Леви-Чивита, а символом ∇^* обозначен оператор формально сопряженный к ∇ . В статьях [6—9] изучены свойства оператора D^*D . В частности, доказано, что $D^*D:\Omega^r(M)\to\Omega^r(M)$ — самосопряженный неотрицательный эллиптический оператором второго порядка. Ядро $\ker D^*D$ составляют конформно киллинговые r-формы, образующие на многообразии (M,g) конечномерное векторное пространство $\mathbf{T}^r(M,\mathbb{R})$, размерность которого равна числу Тачибаны $t_r(M)$ многообразия (M,g). При этом эллиптичность оператора D^*D обосновывалась тем фактом (см.: [9]), что он является примером эллиптического оператора Стейн — Вейса [10]. В настоящей статье мы докажем эллиптичность оператора D^*D прямыми вычислениями. Справедлива

Теорема. Пусть $\left\{d,\,d^*,D\right\}$ — базис пространства естественных (относительно изометрических диффеоморфизмов) дифференциальных операторов первого порядка, действующих на пространстве $\Omega^r(M)$ внешних дифференциальных r-форм $(1 \le r \le n-1)$ на римановом многообразии $(M,\,g)$ и имеющих значение в пространстве однородных тензоров над $(M,\,g)$. Тогда для оператора D^* , формально сопряженного κ D, дифференциальный оператор второго порядка

$$D^*D: \Omega^r(M) \to \Omega^r(M)$$

является эллиптическим.

2. Доказательство теоремы

Главные символы дифференциальных операторов ∇ , ∇^* , d и d^* первого порядка, определенных на векторном пространстве $\Omega^r(M)$, хорошо известны (см. [11, с. 76—77; 12, с. 628]):

$$\sigma_{\xi}(\nabla)\omega_{x} = \xi \otimes \omega_{x}; \ \sigma_{\xi}(\nabla^{*})\theta_{x} = -i_{\xi}\theta_{x};$$

$$\sigma_{\xi}(d)\omega_{x} = \xi \wedge \omega_{x}; \ \sigma_{\xi}(d^{*})\omega_{x} = -i_{\xi}\omega_{x}$$

для всех $\xi \in T_x^*M - \{0\}$, $\omega_x \in \Lambda^r \left(T_x^*M\right)$ и $\theta_x \in T_x^*M \otimes \Lambda^r \left(T_x^*M\right)$ в каждой точке $x \in M$, где $\Lambda^r \left(T_x^*M\right)$ — пространство ковариантных кососимметрических тензоров над T_xM . Тогда главный символ $\sigma_{\mathcal{E}} \left(D^*D\right)$ оператора D^*D имеет вид

$$\sigma_{\xi}\left(D^{*}D\right)\omega_{x} = -\frac{r}{r+1}\left\|\xi\right\|^{2}\omega_{x} + \frac{n-2r}{r+1}\xi\wedge\left(i_{\xi}\omega_{x}\right)$$

в каждой точке x многообразия (M, g). Следовательно,

$$g_{x}\left(-\sigma_{\xi}\left(D^{*}D\right)\omega_{x},\omega_{x}\right)=\frac{r}{r+1}\left\|\xi\right\|^{2}\cdot\left\|\omega_{x}\right\|^{2}+\frac{n-2r}{\left(n-r+1\right)\left(r+1\right)}\left\|i_{\xi}\omega_{x}\right\|^{2}.$$

В частности, для n=2r из этого равенства следует, что оператор D^*D является лапласианом (см.: [5]). Используя неравенства $\|i_{\xi}\omega_x\|^2 \le \|\omega_x\|^2 \|\xi\|^2$ и $n \ge 2r$, из приведенного выше равенства заключаем, что

$$r \|\xi\|^2 \|\omega_x\|^2 \le g(-\sigma_{\xi}(D_3^*D_3)\omega_x, \omega_x) \le (n-r) \|\xi\|^2 \|\omega_x\|^2.$$

Следовательно, для $n \ge 2r$ дифференциальный оператор второго порядка $D^*D: \Omega^r(M) \to \Omega^r(M)$ выступает эллиптическим оператором (см.: [11, с. 74; 12, с. 628]).

Полагаем далее, что $\frac{1}{2}$ n < r < n, тогда

$$\begin{split} g_{x}\left(\sigma_{\xi}\left(D^{*}D\right) \ \omega_{x}, \sigma_{\xi}\left(D^{*}D\right) \ \omega_{x}\right) &= \\ &= g_{x}\left(r\|\xi\|^{2} \ \omega_{x} + \frac{n-2r}{n-r+1} \ \xi \wedge \left(i_{\xi}\omega_{x}\right), \ r\|\xi\|^{2} \ \omega_{x} + \frac{n-2r}{n-r+1} \xi \wedge \left(i_{\xi}\omega_{x}\right)\right) = \\ &= r^{2}\|\xi\|^{4} \cdot \|\ \omega_{x}\|^{2} + \frac{(n-2r)^{2}}{(n-r+1)^{2}} \ g_{x}\left(\xi \wedge \left(i_{\xi}\omega_{x}\right), \xi \wedge \left(i_{\xi}\omega_{x}\right)\right) + \\ &+ 2\frac{r(n-2r)}{n-r+1} \ \|\xi\|^{2} \ g_{x}\left(\omega_{x}, \ \xi \wedge \left(i_{\xi}\omega_{x}\right)\right) = \\ &= r^{2}\|\xi\|^{4} \cdot \|\ \omega_{x}\|^{2} + \frac{(n-2r)^{2}}{(n-r+1)^{2}} \ g_{x}\left(i_{\xi}\omega_{x}, i_{\xi}\left(\xi \wedge \left(i_{\xi}\omega_{x}\right)\right)\right) + \\ &+ 2\frac{r(n-2r)}{n-r+1} \ \|\xi\|^{2} \cdot \|\ i_{\xi}\omega_{x}\|^{2} = \\ &= r^{2}\|\xi\|^{4} \cdot \|\ \omega_{x}\|^{2} + \frac{(n-2r)^{2}}{(n-r+1)^{2}} \|\xi\|^{2} \cdot \|\ i_{\xi}\omega_{x}\|^{2} + 2\frac{r(n-2r)}{n-r+1} \ \|\xi\|^{2} \cdot \|\ i_{\xi}\omega_{x}\|^{2} = \\ &= \frac{(n-2r)^{2} + 2r(n-2r)(n-r+1)}{(n-r+1)^{2}} \ r^{2} \|\xi\|^{4} \cdot \|\ \omega_{x}\|^{2} + \|\xi\|^{2} \cdot \|\ i_{\xi}\omega_{x}\|^{2} = \\ &= \frac{n-2r}{(n-r+1)^{2}} \left(n-2r+2r(n-r+1)\right) \ r^{2} \|\xi\|^{4} \cdot \|\ \omega_{x}\|^{2} + \|\xi\|^{2} \cdot \|\ i_{\xi}\omega_{x}\|^{2} = \\ &= \frac{n-2r}{(n-r+1)^{2}} \left(n+2r(n-r)\right) \ r^{2} \|\xi\|^{4} \cdot \|\ \omega_{x}\|^{2} + \|\xi\|^{2} \cdot \|\ i_{\xi}\omega_{x}\|^{2}. \end{split}$$

На основе неравенства $\left\|i_{\xi}\omega_{x}\right\|^{2} \leq \left\|\xi\right\|^{2} \cdot \left\|\omega_{x}\right\|^{2}$ заключаем, что $\frac{n-2r}{\left(n-r+1\right)^{2}}(n+2r(n-r)) r^{2} \left\|\xi\right\|^{4} \cdot \left\|\omega_{x}\right\|^{2} + \left\|\xi\right\|^{2} \cdot \left\|i_{\xi}\omega_{x}\right\|^{2} \geq$

$$\geq \left(r^{2} + \frac{(n-2r)}{(n-r+1)^{2}} (n+2r(n-r))\right) \|\xi\|^{4} \cdot \|\omega_{x}\|^{2} =$$

$$= \frac{1}{(n-r+1)^{2}} \left(r^{2} (n-r+1)^{2} + (n-2r)(n+2r(n-r))\right) \|\xi\|^{4} \cdot \|\omega_{x}\|^{2}.$$

Рассмотрим коэффициент при $\|\xi\|^4 \cdot \|\omega_x\|^2$ без учета числового множителя $1/(n-r+1)^2$. А именно

$$r^{2}(n-r+1)^{2} + (n-2r)(n+2r(n-r)) =$$

$$= r^{2}(n-2r+r+1)^{2} + (n-2r)(n+2r(n-r)) =$$

$$= r^{2}((n-2r)^{2} + 2(n-2r)(r+1) + (r+1)^{2}) + (n-2r)(n+2r(n-r)) =$$

$$= (n-2r)(r^{2}(n-2r) + 2r^{2}(r+1) + n + 2r(n-r)) + r^{2}(r+1)^{2} =$$

$$= (n-2r)(r^{2}n-2r^{3} + 2r^{3} + 2r^{2} + n + 2rn - 2r^{2}) + r^{2}(r+1)^{2} =$$

$$= (n-2r)(r^{2}n+n+2rn) + r^{2}(r+1)^{2} =$$

$$= (n-2r)(r^{2}n+1$$

Следовательно, $g_x(\sigma_\xi(D^*D)\omega_x,\sigma_\xi(D^*D)\omega_x)>0$ для r таких, что $\frac{1}{2}$ n < r < n, а потому в этом случае дифференциальный оператор второго порядка $D^*D: \Omega^r(M) \to \Omega^r(M)$ является эллиптическим оператором (см. [11, с. 74; 12, с. 628]). Это и завершает наше доказательство.

Замечание. Мы благодарны проф. Н. К. Смоленцеву за помощь, которую он оказал нам при проведении второй части доказательства теоремы.

Список литературы

- 1. *Bourguignon J. P.* Formules de Weitzenbök en dimension 4, Seminare A. Besse sur la géometrie Riemannienne dimension 4, Cedic. P., 1981. P. 308—331.
- 2. *Stepanov S. E.* On conformal Killing 2-form of the electromagnetic field // Journal Geom. and Phys. 2000. Vol. 33. P. 191—209.
- 3. Stepanov S.E. A class of closed forms and special Maxwell's equations. Tensor N.S., 1997. Vol. 58. P. 233—242.
- 4. Tachibana S., Yamaguchi S. The first proper space of Δ for p-forms in compact Riemannian manifolds of positive curvature operator // Journal of Differential Geometry. 1980. Vol. 15. P. 51—60.
- 5. *Kashiwada T*. On conformal Killing tensor // Natural. Sci. Rep. Ochanomizu Univ. 1968. Vol. 19, № 2. P. 67—74.
- 6. *Степанов С.Е.* Новый сильный лапласиан на дифференциальных формах // Математические заметки. 2004. Т. 76, вып. 3. С. 452—458.
- 7. Stepanov S. E., Mikeš J. Betti and Tachibana numbers of compact Riemannian manifolds // Differential Geometry and its Applications. 2013. Vol. 31, № 4. P. 486—495.
- 8. *Stepanov S. E., Mikeš J.* Betti and Tachibana numbers // Miskolc Mathematical Notes. 2013. Vol. 14, № 3. P. 265—276.
- 9. *Степанов С. Е.* Кривизна и числа Тачибаны // Математический сборник. 2011. Т. 202, № 7. С. 135—146.
- 10. *Brason T.* Stein-Weiss operators and ellipticity // J. Funct. Anal. 1997. Vol. 151, № 2. P. 334—383.
- 11. *Пале Р*. Семинар по теореме Атьи Зингера об индексе. М., 1970.
 - 12. Бессе А. Многообразия Эйнштейна. М., 1990.

S. Stepanov, I. Tsyganok

Ellipticity of a differential operator

Let (M, g) be an *n*-dimensional Riemannian manifold and $\{d, d^*, D\}$ basis of the space of natural (with respect to isometric diffeomorphisms) differential operators on the space $\Omega^r(M)$ of exterior differential *r*-forms

 $(1 \le r \le n-1)$ with values in the space of homogeneous tensors on (M, g) (see Zbl 0484.53039). If we denote by D^* the operator formally adjoint to the third basis operator D then the second order operator D^*D : $\Omega^r(M) \to \Omega^r(M)$ is elliptic (see also Zbl 1239.53058).

УДК 512.64

А.Я. Султанов¹, И.А. Гарькина²

¹Пензенский государственный университет ²Пензенский государственный университет архитектуры и строительства sultanovaya@rambler.ru¹; i.a.naum@mail.ru²

Неприводимые четырехмерные алгебры с единицей, получаемые методом Кэли — Диксона

Найдены все четырехмерные неприводимые ассоциативные алгебры с единицей над полем действительных чисел, которые можно получить методом Кэли — Диксона удвоения действительных двумерных алгебр с единицей.

Ключевые слова: линейные алгебры, неприводимые алгебры, ассоциативные алгебры, алгебры с единицей, процесс Кэли — Диксона удвоения алгебр.

В 1908 году Э. Штуди и Э. Картан опубликовали обзорную статью [1], в которой они в частности привели классификацию всех четырехмерных неприводимых ассоциативных алгебр с единицей над полем R действительных чисел. Приведем эту классификацию по книге [2]. Алгебры эти обозначим символами $A_{4,m}$ (m=1,2,...), а базисные элементы этих алгебр символами e_0,e_1,e_2,e_3 , причем e_0 во всех случаях является символом

_

[©] Султанов А.Я., Гарькина И.А., 2015